Optimizing Ethernet Access Network for Internet Protocol Multi-Service Architecture

- Author: Mikael Forsten
 - TeliaSonera
 - Sonera Carrier Networks
- Supervisor: Docent Timo O. Korhonen
- Instructor: M.Sc Jari Sarasma

1

Agenda

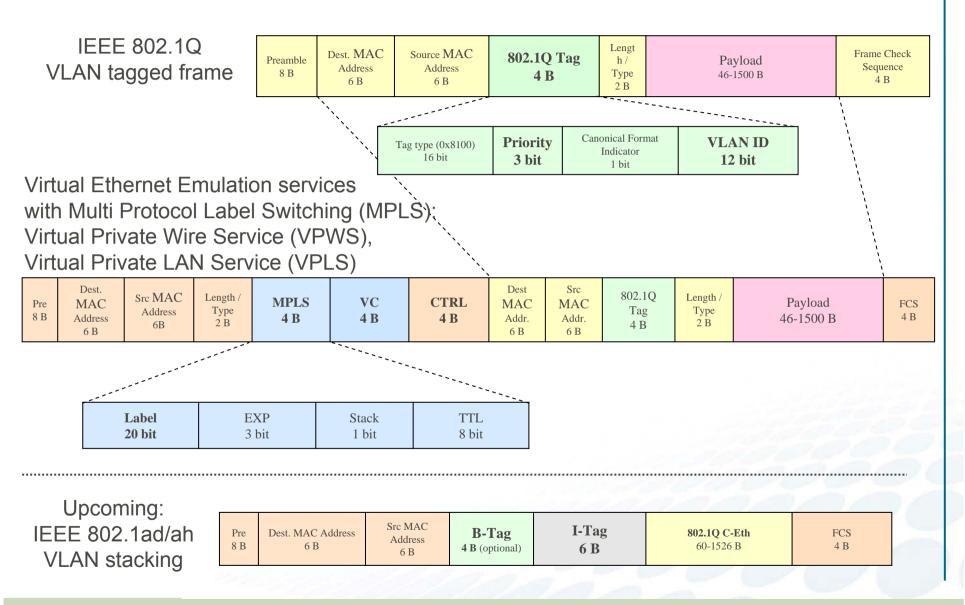
- Background and motivation for the research
- Research issues
- Comparison of solutions
- Conclusions and future views

Migration from ATM to Ethernet - Drivers

- Cost
 - Low equipment costs of Ethernet (examples of list prices)
 16 GE mod (19995\$) + 16 GBIC (à 995\$) = 36000\$ → 2250\$ / GE
 STM1 ATM interface (155 Mbit/s) 12000\$
 - Relative technical simplicity of Ethernet reduces overall infrastructure costs
- Flexible and rapid service provisioning
 - Wide range of speeds with fine granularity (1 Mbps ... 1 Gbps)
- Packet switching
 - Similar with applications and suitable for IP
 - Layer 2 bridged multipoint connectivity
- Ubiquitous adoption of Ethernet technology
 - Standard interfaces 10M/100M/1G/10G are widely available
 - Good interoperability
- Many of these advantages are the result of the inherent simplicity of Ethernet

Ethernet Development Phases

- Ethernet originally designed for private Local Area Networks (LAN)
 - Coaxial cable, bus topology
 Pair cable, star topology, full duplex
 - Hub based → switch based (bridge)



• Metropolitan Area Networks (MAN)

Operator Networks

Virtual Connections in Carrier Ethernet

Migration from ATM to Ethernet – Challenges (1/2)

Limitations in end-to-end QoS guarantees compared to ATM

- "Packet colouring" (to mark packets for prioritisation, scheduling, policing etc.)
- Scheduling and policing to maintain fair access
- Ensuring optimal path establishment trough the network
- Connection admission for new service requests

Protection Mechanisms

- Slow failure recovery of Spanning Tree (STP): tens of secs (50 ms in SDH)
- Lack of fault isolation capability
 - No in-built alarms like LOS etc. found in SDH
 - No "Ethernet ping"

Migration from ATM to Ethernet – Challenges (2/2)

In-service OAM

- No overhead capability, e.g. to monitor bit-error-rate (BER)
- Some management standards are being developed (e.g. 802.1ag - Connectivity Fault Management)

Scalability and network resource utilization

- Limited standard Virtual LAN tag space, max. 4096 VLAN IDs
- Issues with large Spanning Trees
- MAC tables size (tens of thousands hosts in an operator network)

Security

- Customer integrity
- Address spoofing
- Other malicious behaviour

Possible solutions to limitations & shortcomings (1/2)

QoS performance – Per Hop

- VLAN tag Priority Field (3 bits \rightarrow 8 priority classes)
- MPLS emulated Ethernet, a more versatile solution

Protection mechanisms

- Rapid Reconfiguration of Spanning Tree, IEEE 802.1D RSTP (≈ 1 s convergence time)
- Multiple Spanning Trees, IEEE 802.1Q
- Resilient Packet Ring, IEEE 802.17
- MPLS

Possible solutions to limitations & shortcomings (2/2)

OAM issues

- Fault isolation and in-service OAM addressed by
 - ITU-T Q3/SG13: Y.1730 + drafts Y.17ethprot, Y.17ethoam
 - IEEE: 802.3ah EFM (Ethernet First Mile), 802.3ag CFM (Connectivity Fault Mgmt)
 - Metro Ethernet Forum

Scalability and network resource utilization

- VLAN tag stacking (double tag) IEEE 802.1ad (draft), IEEE 802.1ah (draft, over 20 bit tag)
- MPLS techniques

Security

- Customer VLAN
- Vendor's proprietary solutions
- IETF draft RFC: draft-melsen-mac-forced-fwd-03.txt

Research motivation

- Study the possible Ethernet service solutions and the state of standardization
- Comparison of solutions
- Give recommendations

Carrier Class Ethernet – Metro Ethernet Forum

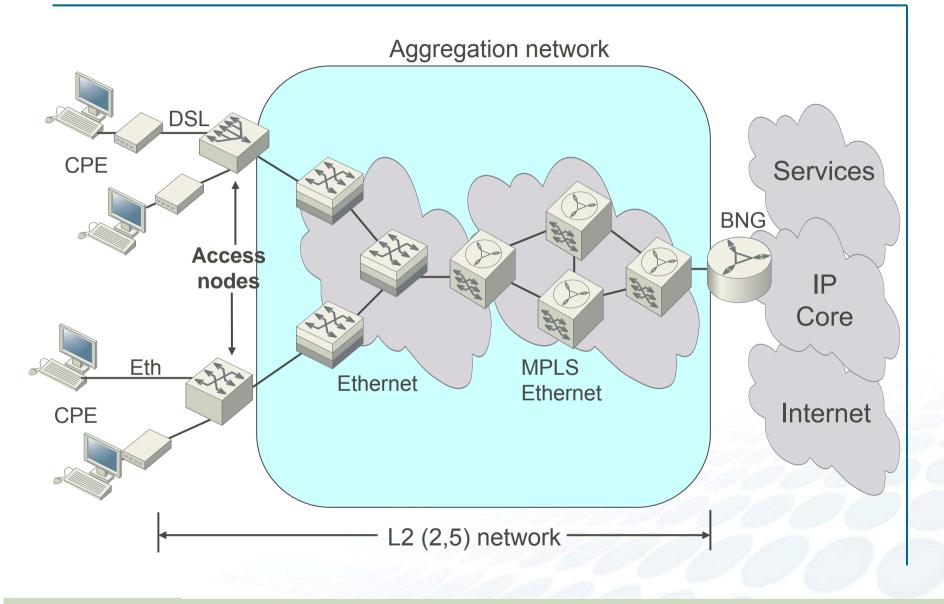
• Scalability

- Number of virtual connections in the range of tens of thousands
- x10 Gbps bandwidths

• Protection

October 18, 2005

- 50 ms protection time (convergence)
- End-to-end path protection (resiliency)
- Aggregated line and node protection
- Hard Quality of Service
 - Guaranteed end-to-end service level agreement
 - End-to-end CIR and EIR
 - Business, residential and mobile


Service management

- Fast service creation
- Carrier-class OAM capabilities
- Customer Network Management

Time Division Multiplexing support

- Seamless integration of TDM
- Circuit emulation services
- Support for existing voice applications

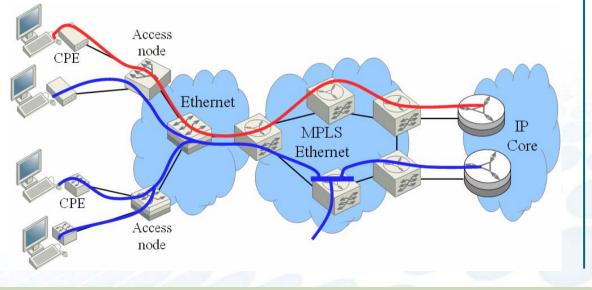
Ethernet-based Access Aggregation Network

October 18, 2005

Master's Thesis Seminar

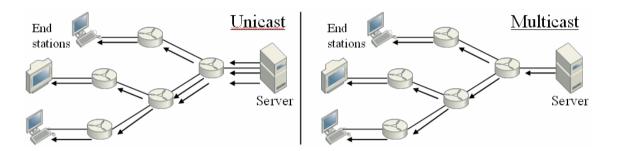
Services in aggregation – "Triple Play"

- •Internet
- Voice over IP

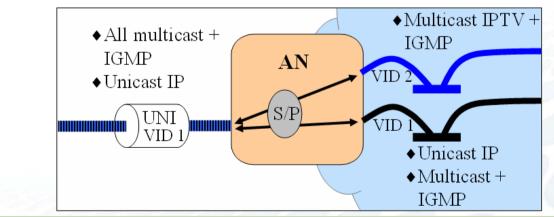

Video services

- •Multicast IPTV
- •Video on Demand
- •Near VoD (multicast)
- Videoconferencing (multicast)

Virtual Private Networking


•Layer 2 VPN •Layer 3 VPN

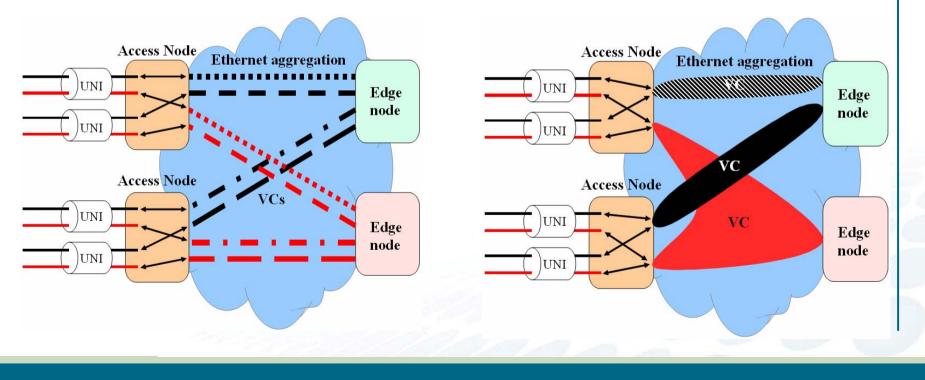
- Optimal aggregation network implementation?
- Triple play?
- Added IP level awareness for L2 aggregation?
- L3 aggregation?



Multicast

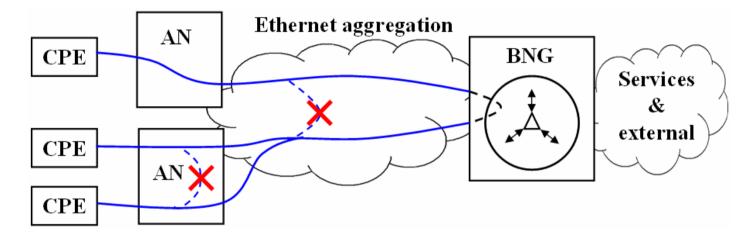
• Packets are transmitted only once and network nodes replicate the packets into all interfaces having multicast group members

- Ethernet nodes need to support Internet Group Management Protocol
- Access node is a suitable point for L2 multicast replication
- IGMP snooping for L2 nodes
- PIM in routers



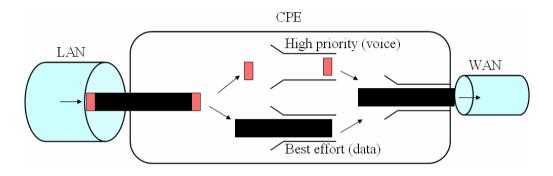
Ethernet VC implementation alternatives

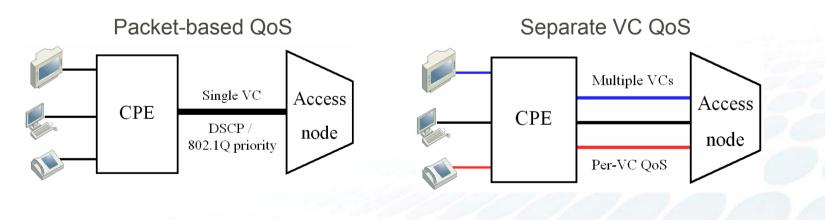
- Customer unique VLANs
- Secure
- Limited and complex with conventional Ethernet
- Heavy provisioning and management workload


- Shared service VLANs
- Better scalability and easy provisioning task
- Problematic security issues

 L2 connectivity between customers

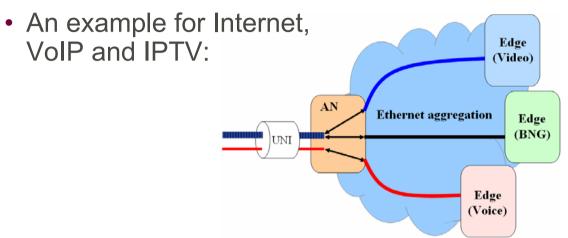
"Peer to peer" access, L2 VPN, secure connectivity


Usually prevented with MAC/IP Forced Forwarding in shared service VLANs


- Optimal paths within a regional aggregation network could be enabled, but it would require control, traffic counters and policing in the Access Node
- L2 VPN for organizational users allowed within a private VLAN
- MAC address spoofing prevented with Virtual MAC or IP forwarding and filters.
- IP anti-spoofing with DHCP relay and Option 82 in the Access Node

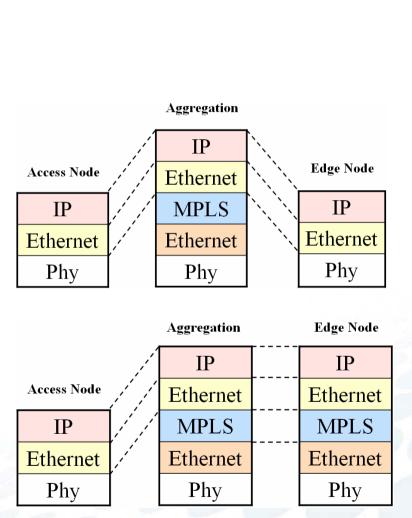
QoS for Customer Premises and Upstream

 A level of packet-based QoS functions reguired for Customer Premises Equipment

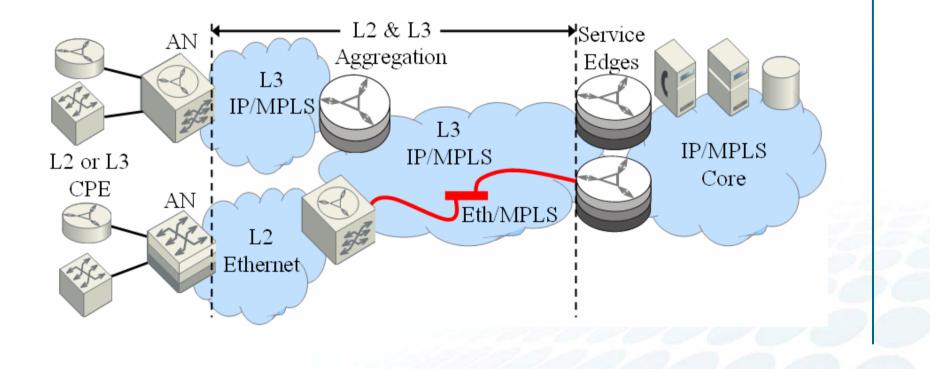


• VC-based QoS leads to restricted service access when separate interfaces are required for all services

Ethernet VC (VLAN) separation for services


Delivering services within separate or shared VLANs gives different alternatives

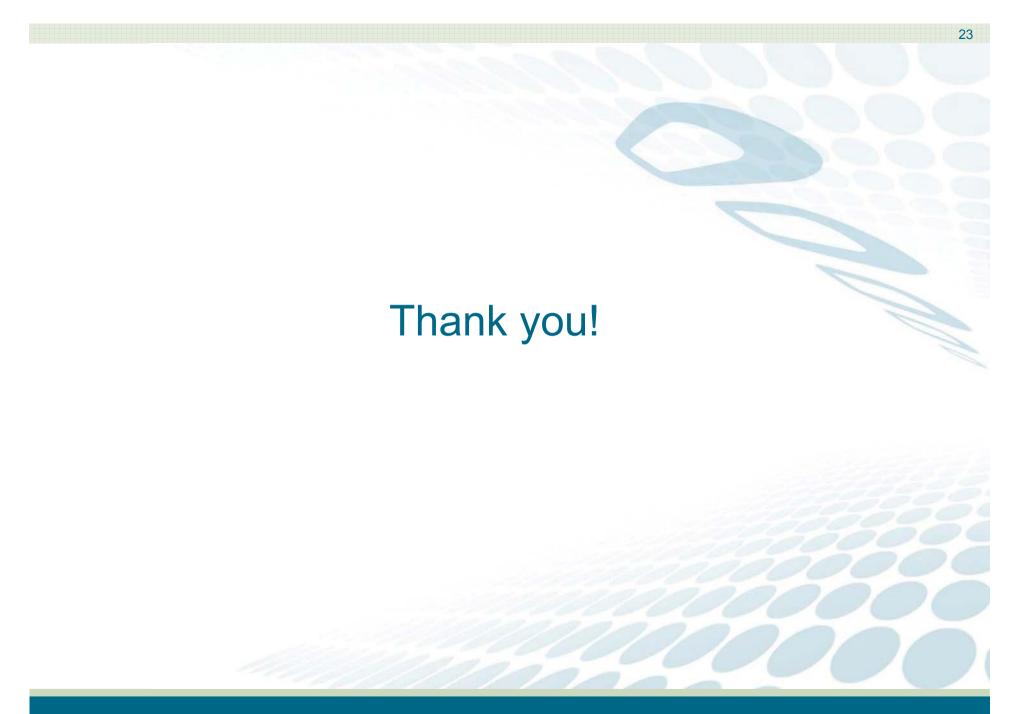
- Using QoS for upstream VoIP is problematic for VoIP services used over public Internet VC
 - Cannot trust upstream packet priority
 - Rate limiting and quota could be used for VoIP class if enabled in Internet VC
 - Separate VC for VoIP gateway access a controlled VoIP solution


Emulated Ethernet with MPLS

- Better than multitagging VLANs
 - MPLS replaces STP in failure recovery
 - Enables 50 ms convergence time
 - Flexible and easy service provisioning
- May be used transparent to the Access Node and Edge
- Adds scalability with 20 bit VC label
- Separate VLAN domains for each physical Interface at the Edge
- The use of MPLS in the Egde allows separate VLAN domains for each MPLS VC and thus 4096 802.1Q VLANs for each 20-bit MPLS vc label = highly scalable

Layer 3 aggregation

- It seems that layer 2 aggregation is somewhat complex a solution and requires a lot of higher layer functionality in addition.
- Layer 3 aggregation with routers may provide better implementation for the future if router cost is reduced and IPv6 is utilized.


October 18, 2005

Conclusions

- Service models for the future require a lot of extra functionality compared to a traditional network.
- Some of the additional requirements for the CPEs and ANs are results of the use of Ethernet, but the major factor clearly is the new, better multipoint service infrastructure.
- Ethernet is certainly beginning to have competent performance and features for carrier network implementations, but standards are required to be finished.
- Bridged Layer 2 Ethernet access network model may still be an intermediate step from ATM evolving to a fully routed Layer 3 IP aggregation network model and IPv6.
- Ethernet emulation with MPLS-based services is the most flexible and reliable solution for Carrier Class Ethernet implementation

Recommendations

- Customer unique VLAN model is suitable for organizational customers
- Shared service VLAN model is suitable for masses consumers
- Virtual MAC, forced forwarding and IP layer awareness required in the Access Node
- DHCP relay with Option 82, ARP proxy and IGMP proxy reporting required in the Access Node
- Multicast IPTV implemented in separate VLAN
- MPLS should be used for large aggregation networks
- Seven-OSI-layer-aware switches are recommended for further study

October 18, 2005

Master's Thesis Seminar